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This paper aims to assess the information loss and its effect on r when making a continuous numerical 
variable discrete by categorising the data. A simulation is used in order to determine the true extent of 
decrease in r while at the same time correcting for the assumption Morrison made regarding the 
uniformity of the error distribution.  The results are then compared with those obtained using the 
approach suggested by Morrison. 
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Introduction 

Marketing research is a discipline which relies heavily on surveys for the purpose of data 
collection. The results are often acknowledged as influenced by the interviewing techniques 
and methods but the impact which the actual data manipulation may have on the conclusions 
is seldom noted. Questionnaires commonly use open-ended questions to gather information 
on topics such as age, income, and so on. While these open-ended questions may allow for a 
great and sometimes unlimited number of possible answers, the data often requires 
subsequent categorisation or scaling before any analysis can take place.  

There are two types of questions for which categorisation is required. Quantitative open-
ended questions seek numerical answers whereas qualitative open-ended questions call for 
verbal answers. This paper focuses on the quantitative kind and aims to assess the 
information loss which may occur when making a continuous numerical variable discrete by 
categorising the data.  

A number of researchers have examined this issue in some detail in the past (Morrison 1972; 
Martin 1973, 1978; Reynolds & Neter 1980; Lawrence 1981). Reynolds & Neter (1980), 
guided by Information Theory, concluded that eight categories was the optimal number to use 
when analysing respondents’ age. Lawrence (1981), however, disputed this finding, arguing 
that Information Theory relies on proportions in classes irrespective of absolute numbers in 
them, thus disguising the fact that analyses conducted with small sample numbers could 
easily provide differences only arising by chance. According to Lawrence, random variations 
could often falsely suggest that information had been gained. As a result, Information Theory 
would appear to be best used in situations when the volume of data available for analysis 
provides enough statistical validity for meaningful interpretation.  

Reynolds & Neter’s conclusion that there is an optimal number of categories minimising 
information loss would, however, remain valid for small numbers of categories, since in this 
situation there are larger numbers of respondents in each category. In such instances, an 
increase in information gained is observed when the number of categories is increased to 
eight, with only marginal additional gains in information beyond that point.  
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In contrast to the two above approaches, which rely on Information Theory to assess 
information losses (and gains), Morrison (1972), using a simple algebraic calculation, and 
subsequently Martin (1978), using a series of simulations, focused on the effects of 
categorisation or scaling on the correlation coefficient r.  

Morrison investigated the information loss in the case of a correlation, initially perfect (r=1), 
between two continuous variables, one independent and the other dependent. He observed the 
changes that occurred in r when the dependent variable remained continuous while the 
independent variable became discrete, as would happen when using an interval scale. He 
concluded that the loss in correlation resulting from discrete scaling is trivial beyond four or 
five categories.  

However, Morrison assumed that the error distribution is exactly uniform and exhibits a 
variance equal to 1/12 for all scale intervals, the length of each interval being one (1/12 is the 
variance of a random variable with uniform distribution between -.5 and +.5). This is not 
entirely accurate and would only hold true if the error term could be both positive and 
negative. At the two extremes of the scale, larger values can only be rounded down and 
smaller values rounded up. More precisely, Morrison appears to calculate a correct error 
distribution but it is inaccurate since a variance of 1/12 does exist but only for the scaled 
values and not the initial ones.  

Nevertheless, Martin (1978) applied Morrison’s approach to a wider range of cases and 
further examined more practical cases when r = .1, .2, .5, .7, .8 and .9. His paper, however, 
fails to detail precisely his methodology and suggests, for instance, that as few as one 
simulation may have been used in each case. An in-depth examination of his finding can be 
found elsewhere (Dion & Quester 1996).  

This paper relies on a different approach to Morrison’s, using simulation in order to 
determine the true extent of decrease in r while at the same time correcting for the inaccurate 
assumption he made regarding the uniformity of the error distribution. The results are then 
compared with those obtained by Morrison.  

Method 

The loss of information can be quantified with the use of the correlation coefficient linking 
the initially continuous variable with its own categorised self. The hypothesis that scaling 
does not affect the amount of information would imply that this observed correlation equals 
one. Any loss of information would thus result in the observed correlation differing from 1 
and the magnitude of the difference provides a measure for the extent of information loss.  

In the first instance, a random uniform linear variable with values between 0 and 1 was 
generated using the ‘ALEAT’ function from Lotus 123. Scaling was undertaken, using a 
variety of scaling point numbers. The linear correlation coefficients between the initial 
variable and its scaled values was then calculated for a series of observations.  

While selecting numbers between 0 and 1 could appear artificial and somewhat unrealistic 
from a market research perspective, one must note that this is in no way different from 
working on an interval from 0 to 100 or 0 to 1000, since calculations are conducted on r, 
which is indifferent to the scale used. Indeed, since all calculations were performed by Lotus 
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123 to 18 decimal places, results are similar to those which would have been derived from 
using ’real’ numbers.  

Furthermore, an alternative approach using a limited range of whole numbers instead of those 
generated by ‘ALEAT’ would present a number of shortcomings. Firstly, it would multiply 
the number of analyses to conduct (for each type of non-uniform distribution selected) and 
thus would make a synthesis more difficult. It would also involve reducing the range further 
whereas the most common practice is to scale truly continuous or semi-continuous variables 
into discrete ones, whether the available secondary data consist of continuous variables, such 
as age, wage or cost or whether respondents are asked to indicate their answers using pre-
formed categories. Finally, using a uniform distribution of numbers allows for a direct 
comparison with Morrison’s results.  

The process was computerised with an appropriate program so as to repeat the calculation a 
great number of times in order to eliminate the risk of random variations affecting the results. 
In particular, the number of observations was varied so as to enable the assessment of this 
factor on the standard deviation of the results obtained. A schematic representation of the 
process is shown in Figure 1.  

 

Figure 1. Schematic representation of the simulation process  

 



Marketing Bulletin, 1997, 8, 59-65, Research Note 2  

Page 4 of 7  http://marketing-bulletin.massey.ac.nz 

Results 

The results of the simulations are shown in Table 1.  
 
The case of n=1000 provides, as expected, the smallest standard deviations. It is possible to 
develop confidence intervals around the value of interest as demonstrated in Table 2.  

As Table 2 shows, the results using Morrison’s method appear more consistent with ours for 
the larger categories. When nine categories are used, the figure calculated using his method 
differs from ours by a mere 0.5%. For smaller categories, however, his findings are not 
confirmed by our simulation. Indeed, when only two categories were used, our calculations 
differ from those produced by his method by 5%. This suggests a more substantial loss of 
information than previously thought. However, when three or more categories are used, the 
loss of information was relatively slight.  

These results suggest that the theoretical calculations using Morrison’s method provide a 
satisfactory solution for large numbers of intervals but fail to do so for smaller numbers of 
intervals; the smaller the number of intervals, the greater the difference found between our 
calculations and Morrison’s.  
 
 
Table 1.   Results of simulations  
  

 Number of categories  

n* Indicator 2 3 4 5 7 9 12   20  

1000 Mean    

SD 

.8662   

.0049 

.9429   

.0023 

.9682   

.0012 

.9799   

.0008 

.9897   

.0004 

.9938   

.0002 

.9965   

.0001 

.9987   

.0001 
 

500 Mean    

SD 

.8663   

.0069 

.9435   

.0028 

.9682   

.0021 

.9799   

.0012 

.9898   

.0005 

.9938   

.0003 

.9965   

.0002 

.9987   

.0001 
 

200 Mean    

SD 

.8661   

.0105 

.9429   

.0054 

.9686   

.0027 

.9796   

.0018 

.9898   

.0009 

.9938   

.0006 

.9966   

.0003 

.9988   

.0001 
 

100 Mean    

SD 

.8668   

.0153 

.9429   

.0074 

.9688   

.0038 

.9799   

.0024 

.9897   

.0013 

.9938   

.0008 

.9966   

.0004 

.9988   

.9988 
 

 *n= number of repetitions of procedure B (refer Fig. 1) 
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Table 2.    Confidence intervals of the linear correlation coefficients between the 
                  random continuous linear variable and its discrete form    

 

  Number of categories 

  2 3 4 5 7 9 12 20  

95% confidence intervals 

Upper Bound .8665 .9430 .9683 .9799 .9898 .9938 .9965 .9988  

Lower Bound  .8659 .9428 .9681 .9798 .9897 .9938 .9965 .9987  

Morrison’s method .8165 .9354 .9661 .9789 .9856 .9895 .9920 .9937  

 

If one aimed to assess accurately the loss in shared variance occurring between the two 
variables, the correlation coefficients must be squared. This is shown in Table 3.  

Once again, it is clear that the main difference between Morrison’s conclusions and ours 
concerns the magnitude, rather than the existence, of the information loss that occurs when 
categorising data. Both methods converge as the number of categories approached six, after 
which the observed losses become unsubstantial.  
 
 
Table 3.   Percentage loss in explained variance according to the number of 
                 categories of the independent variable  
   

Number of 
categories 

r -square values  % of explained variance lost as a result of 
categorisation 

  Morrison’s Simulation* Morrison’s Simulation* Difference 

2 66.7 75.0 33.3 25.0 8.3 

3 87.5 88.7 12.5 11.3 1.2 

4 93.3 93.7   6.7   6.3 0.4 

5 95.8 96.0   4.2   4.0 0.2 

6 97.1 97.2   2.9   2.8 0.1 

7 97.9 97.9   2.1   2.1   0 

8 98.4 98.4   1.6   1.6   0 

9 98.8 98.8   1.2   1.2   0 
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Conclusions 

Despite Morrison’s mistaken assumption regarding the uniformity of error distribution, his 
results are generally upheld. Overall, our results suggest that reducing a continuous variable 
to six to eight categories results in minimal information losses; Morrison suggested that such 
losses become trivial beyond five categories. A market researcher relying on this rule, 
however, should remain mindful that it is always ill-informed to write a close-ended question 
of this type with no prior knowledge of the response distribution. Exploratory research should 
always provide the justification for such categorisation decisions. The decision to use more or 
fewer categories would also be subject to other statistical circumstances, including the level 
of correlation between the variables under study.  

When trading off market research realities, such as the need to simplify questionnaires for the 
purpose of reducing interviewing time, against market research’s goals, such as the need to 
collect as much reliable information as possible, the researcher has to take into account the 
potential danger that exists in over-reducing the number of proposed categories. While 
increasing the number of categories never results in poorer information transfer, reducing it 
requires caution in order to minimise information losses. Increasing category numbers will, 
however, only contribute a decreasing amount of additional information (law of diminishing 
returns).  

There does not appear to be a unique solution or universal rule regarding the optimal number 
of categories to use. Thus, Lawrence’s recommendation to gather and enter as much data as 
possible with as many categories as possible, seems sensible. Then, initial calculations, such 
as correlation, need to be undertaken to ascertain which type of simplifying categorisation 
may be suitable, if any.  

Market researchers often must adopt categorisations which are both more relevant and 
practical for their ultimate purpose, but it rarely makes sense to divide the data in equal size 
categories. For example, dividing some population on the basis of age in order to obtain an 
equal number of observations in each category may result in such odd age classes as 15-24, 
33-38, 52-54 and so forth whereas more natural classes such as 15-29, 30-39, 40-49 and the 
like would make more sense for the purpose of further analysis, even though numbers of 
respondents in each class may vary. The interpretability of the data, therefore, should also 
contribute to such decisions in categorisation. Furthermore, the number of categories may 
need to be determined in relation to the type of statistical analysis to be carried out. For 
example, a researcher intending to analyse the data using a Chi-Square analysis would 
probably wish to avoid cells with low expected values.  

What is useful and more realistic than any attempt to eradicate information loss when 
categorising a continuous variable is the ability to quantify such losses. A knowledge of such 
losses allows a more accurate assessment of the trade-offs which must be made with other 
market research imperatives, such as duration of questionnaire administration and 
confidentiality issues.  
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