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How to Estimate the Parameters of the Dirichlet Model 
using Likelihood Theory in Excel 

 
Cam Rungie 

 
 
This technical note provides a description of the algebra and an overview of the statistical theory of 
the Dirichlet Model.  It gives a description of the use of likelihood theory to estimate the parameters 
of the model. The model traditionally has been estimated using the method of zeros and ones and 
marginal moments. Likelihood theory provides an alternate which is now, in general, the standard for 
modeling. It has different statistical properties, the strength and weaknesses of which are discussed in 
the paper. A description and example is given of how to use Excel to generate the likelihood 
estimates. This will allow greater understanding of the application of the likelihood method to the 
Dirichlet Model and greater diversity for the model.     
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Introduction 
 
The Dirichlet Model was developed by Goodhardt, Ehrenberg and Chatfield (Ehrenberg 
1959; Goodhardt, Ehrenberg et al. 1984).  It is a model for the patterns of repeat purchases of 
the brands within a product category.  It has been shown to be applicable to many product 
categories and to have substantial uses, particularly with regards to the analysis of what are 
known as the �brand performance measures� (Ehrenberg 1988; Uncles, Ehrenberg et al. 1995; 
Ehrenberg & Uncles 1999; Ehrenberg, Uncles et al. 2003; Rungie, Goodhardt et al. 2003).   
 
The Dirichlet Model is usually applied using packaged software (Uncles 1989; Hewitt 1990; 
Kearns 2000).  The purpose of this document is to layout the algebra and procedures for 
estimating the parameters of the model. This technical note has been written to demonstrate, 
to those researchers who are inclined, how to estimate the parameters of the Dirichlet Model 
in Excel, or a similar package, using likelihood theory.  
 
The notation used in this technical note differs slightly from the notation used in the original 
documentation of the model and in the statistical literature. This has been to move the 
notation closer to statistical tradition where parameters are given Greek symbols and to avoid 
duplication in the use of symbols.  The variations in the notation, where they occur, are noted. 
Specifically: 
 
Construct Original 

Notation 
Notation  
Used Here 

Random variable for the Category Purchase Rate  K 
Shape parameter for the distribution of the category purchase rate 
(negative binomial distribution) 

K γ 

Scale parameter for the distribution of the category purchase rate 
(negative binomial distribution) 

A β 

Random variables for the purchases of individual brands  R1, R2, R3,� 
Parameters for the distribution of purchases of the individual brands 
conditional on the category purchase rate (Dirichlet multinomial 
distribution) 

α1, α2, α3,� α1, α2, α3,� 
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This technical note presents the algebra but not the underlying structure of the model.  In 
particular there is no discussion here of the interpretation of the parameters of the model and 
the underlying latent gamma distributions (Goodhardt, Ehrenberg et al. 1984; Ehrenberg, 
Uncles et al. 2003; Rungie, Laurent et al. 2003; Rungie & Laurent 2003).  
 
Dirichlet Modelling usually involves applying the model to generate estimates of the brand 
performance measures such as purchase rate, market share, penetration, purchase frequency, 
share of category requirements and 100% loyals. These estimates are known as the 
�theoreticals� and are compared to the �observeds� which are calculated directly from the data 
(Ehrenberg, Uncles et al. 2003). A separate research note documents the procedures for 
converting the parameters into the �theoretical� estimates of the brand performance measures 
(Rungie, Goodhardt et al. 2003).      
 
Many of the expressions in this technical note use the mathematical function �gamma�.  This 
is given the symbol Γ.  It is a function available in Excel as the log of gamma.  The Excel 
function is GAMMALN.  Where it is necessary to convert this to the gamma function then 
take the exponential.  Thus, the Excel gamma function is Γ=EXP(GAMMALN).  A property 
of the gamma function is that ( ) ( )1+Γ=Γ rrr  and ( )1! +Γ= rr .  Do not confuse the gamma 
function, Γ, with the parameter, γ, nor with the gamma distribution.  
 
The paper starts with a discussion of why a newer alternate method of estimation for the 
Dirichlet Model is useful and of the strengths and weaknesses of the traditional and 
likelihood methods.  It then describes the Dirichlet Model using algebra and statistical theory. 
It sets up the algebra for likelihood estimation and gives a worked example. The algebra and 
likelihood estimation method are then demonstrated in an Excel workbook which is attached. 
The work book is applicable to a specific data set. It is not a general program for fitting the 
Dirichlet Model. It demonstrates the methods discussed here. The name of the workbook is 
Dirichlet likelihood.xls. 
 
The Features of the Estimation Methods  
 
The traditional approach to estimating the parameters of the Dirichlet Model, as developed 
and recommended by the model�s authors, is the method of zero and ones and marginal 
moments.  This is an appropriate method.  However, given the capabilities which now exist in 
statistical theory and computing, it is sensible to consider alternate approaches to estimation.  
Likelihood theory is now a standard for estimation in modelling generally and it is a 
relatively uncomplicated procedure to apply to the Dirichlet Model and data sets.  The two 
methods, the traditional approach and likelihood estimation, have different statistical 
properties which are discussed below. 
 
The traditional method of zeroes and ones and marginal moments, as developed by the 
model�s authors, has several relevant properties (Goodhardt, Ehrenberg et al. 1984; 
Ehrenberg 1988). (1) It is computationally easy to use and quick. (2) It uses only the 
aggregate results from the raw data, such as the observed penetrations and purchase 
frequencies. Access to the original unit record raw data is not required. While unit record data 
is now more and more available there are some panel market research companies who still do 
not fit the Dirichlet Model to their data and who also only publish aggregate results. Thus 
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there is still a need for methods, like the traditional method of zeros and ones, which estimate 
the parameters of the model from aggregated results.  
 
The alternate estimation method based on likelihood theory has several relevant properties. 
(1) It is known that estimates from likelihood theory have a unique statistical property in that 
they are �efficient�. Over several samples the estimates of the parameters from likelihood 
theory will vary less. They are the estimates with the least sampling variation. In this manner 
they are more accurate (Edwards 1976; Kalwani 1980; Kalwani & Morrison 1980; Eliason 
1993; Chickamenahalli 2000; Brown, Rungie et al. 2003). (2) Likelihood theory uses the 
original unit record raw data. Intuitively (and in reality) this can be expected to generate more 
accurate estimates but it is computationally more complex. With the power of modern 
computers the added calculations are not problematic. (3) Again intuitively, the accuracy of 
likelihood theory can be seen by considering a data set where there are very large purchase 
rates. As the length of time over which the data is collected is increased the penetrations of all 
the brands will move closer to each other and towards the category purchase rate. Despite the 
fact that the volume of data available for estimation is increasing, the decline in the 
differences between the penetrations will limit the accuracy of the traditional method of zeros 
and ones. As a comparison, likelihood theory just goes on getting more accurate as the 
volume of data increases.  
 
The Dirichlet Model is often used to estimate the brand performance measures. The 
traditional method for estimating the parameters of the model was designed to ensure that, for 
one specific measure, market shares, the estimate from the parameters would exactly match 
the observed. This was seen as desirable as it would reduce potential objections from users, 
such as brand managers, to a model which did not accurately estimate the market shares. 
Furthermore, in Dirichlet Modelling, the market shares are sometimes seen as inputs to the 
model, as if they are explanatory variables or covariates, and so there has been a specific 
focus on market shares.  As the use of the model expands this emphasis on the one brand 
performance measure, market shares, may not be sustained. Likelihood theory focuses on the 
estimation of all the parameters of the model equally regardless of the potential use of the 
estimates. In this sense likelihood theory is more robust. As the applications of the Dirichlet 
Model develop and the use of the model diversifies this robustness of likelihood estimation 
may well become increasingly important. 
 
One development of the Dirichlet Model which is particularly important is its generalization; 
the inclusion of covariates such as marketing mix and the characteristics of the shoppers. 
Under these conditions the traditional method of zeros and ones can not be used whereas 
likelihood theory can be (Rungie, Laurent et al. 2003). When comparing the original Dirichlet 
Model and its generalized form it is advisable to use the same estimation methods for both. 
Thus, in this field, the use of likelihood theory is likely to become more prevalent, even for 
the original Dirichlet model. 
 
Finally, likelihood theory is now a standard for estimating for many models in marketing. It 
certainly should be at least available for the Dirichlet Model. Also, over time, it may evolve 
that likelihood theory becomes the standard estimation procedure for traditional Dirichlet 
Model. 
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Probability Density Functions 
 
The Dirichlet Model is a probability density function.  It specifies the distribution of 
purchases by a population of shoppers of each of the brands within a product category over a 
specified period of time.  The category might be, for example, detergents, the period of time a 
year, the population all households in France, and the brands the set of about twenty brands 
of detergents available in supermarkets in that country.  The data in this example would 
record for each household in the sample the purchases of each of the brands over the 
specified year.  The data is multivariate in that there are several brands.  It is discrete, integer 
and nonnegative because purchases are counts which are whole numbers and can�t be 
negative. 
 
The Dirichlet Model is the combination of two probability density functions, the negative 
binomial distribution (NBD) and the Dirichlet multinomial distribution (DMD).  In the 
Dirichlet Model the category purchase rate is assumed to have a NBD over the population of 
shoppers.  The purchases of the individual brands are assumed to have a DMD which is 
conditional on the category purchase rate.  Within the Dirichlet Model the two distributions, 
the NBD and the DMD, are assumed to be independent.  Also, their parameters are assumed 
to have no associations. 
 
Over the population of shoppers let the category purchase rate be a random variable K1.  The 
Dirichlet Model assumes that the category purchase rate has a NBD; i.e. K has a NBD.   
 
The NBD has two parameters which are both positive: 
the shape2 parameter γ   and 
the scale3 parameter (which also influences the shape) β . 
 
The probability density function for the NBD is (Johnson, Kotz et al. 1993):  
 

Equation 1     ( ) ( )
( ) ( )( )k
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kkf ++Γ
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1!,      for k = 0,1,2,...  

 
Let there be h brands.  Over the population of shoppers let the purchases of each brand be a 
set of random variables R1,R2,...,Rh.  Then, the sum of these purchase rates is the category 
purchase rate; R1+R2+...+Rh = K.  The Dirichlet Model assumes that the purchases of each 
brand, conditional on the category purchase rate, have a DMD; i.e. R1,R2,...,Rh conditional on 
K has a DMD. 
 
The DMD has h parameters, one for each brand.  These are α1,α2,...,αh where each is positive.   
 
                                                 

1 In this paper this random variable which is the category purchase rate is given the symbol K. In the original 
documentation of the Dirichlet Model the symbol K was used for one of the parameters of the distribution of 
this category purchase rate. The change has been made because (1) parameters should have Greek symbols not 
Arabic and (2) the category purchase rate is used as the total purchases in the DMD which, in the statistical 
literature, is refereed to as k.  
2 Referred to as the K parameter in the original Goodhardt, Ehrenberg and Chatfield 1984 paper and often 
referred to as the α parameter in the statistical literature. 
3  Referred to as the A parameter in the original Goodhardt, Ehrenberg and Chatfield 1984 paper and often 
referred to as the β or λ parameter in the statistical literature β=1/λ. 
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The probability density function for the DMD is (Johnson, Kotz et al. 1997) 
 

Equation 2 ( ) ( )
( )∏

∑

∑

=

=

=

Γ
+Γ









+Γ









Γ

==+++
h

j jj

jj

h

j
j

h

j
j

hh r
r

k

k
krrrrrrf

h
1

1

1
2121,...,, !

!
...|,...,,

21 α
α

α

α

ααα  

The Dirichlet Model is a probability density function for the purchases of all brands in a 
product category over a period of time.  The model combines these two distributions; the 
NBD and the DMD.  The probability density function for the Dirichlet model is given by: 
 
Equation 3 ( ) ( ) ( )krrrrrrfkfrrrf hhh hh

=+++= ...|,...,,,...,, 2121,...,,,21,...,,,, 2121 αααβγαααβγ  
 
Estimating the Parameters from Data using Likelihood Theory 
 
Likelihood theory can be briefly summarised.  If the probability density function for a 
distribution over a random variable K is f(k) and if an independent sample of n observations is 
drawn, k1,k2,�,kn, then the joint probability density function, L, for the sample is the product 
of all the individual density functions  L= f(k1) f(k2)� f(kn) .  This is known as the Likelihood 
Function.  The estimates for the parameters of f(k) are then generated by finding the values of 
these parameters which maximize L.  This is equivalent to finding the joint probability 
density function such that the most likely observed value is the observed data set.  Often, L is 
a very small number and it is easier and more accurate to maximize its natural log, 
LL=log(L). It is often easier to calculate the natural logs of the individual probability density 
functions. 

Equation 4 ( )( )∑
=

=
n

i
ikfLL

1
log   

This is particularly the case for the Dirichlet Model.  Its probability density functions 
includes the gamma function and it is easier and more accurate to calculate the log of the 
gamma function. The task, in Excel, is to calculate LL and then find the parameter values 
which maximize its value. 
 
Likelihood estimates for the Dirichlet Model can be generated from raw panel data by fitting 
the NBD to the distribution of category purchase rates and the DMD to the distributions of 
purchases of individual brands.  Thus there are two procedures and two probability density 
functions (1) the NBD and (2) the DMD.   
 
The algebraic expressions for LL can be a little complex but calculating them in Excel (as is 
demonstrated below) is not overly difficult. 
 
For the NBD, LL can be summarized as: 

Equation 5     ( )( )∑
=

=
n

i
ikfLL

1
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Where: 
 
Equation 6
 ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )βγγβγβγ ++−+Γ−Γ−++Γ= 1ln1lnlnlnlnln , iiiii kkkkkf  
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The likelihood estimates of parameters γ and β for the NBD are the values for these 
parameters which maximize LL as defined in Equation 5 and Equation 6. 
 
For the DMD, LL can be summarized as  

Equation 7     ( )( )∑
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The likelihood estimates of parameters α1, α2,� αn for the DMD are the values for these 
parameters which maximize LL as defined in Equation 7 and Equation 8. 
 
The Data 
 
The data should be such that for each shopper and for each brand there is a count, which is 
the purchase rate over a specified time period.  Shoppers who do not purchase (non buyers) 
should be included.  If there are h brands and n shoppers there will be nh counts. Set this data 
up in a table with n rows (one per shopper) and h columns (one per brand). 
 
It is assumed that the data is independent.  The purchases of any one shopper are independent 
of the purchases of all other shoppers.  This is a condition assumed in many statistical 
procedures and is usually achieved through proper random sampling and data collection 
procedures.   
 
Solver in Excel 
 
The task is to (1) calculate LL in Excel for a particular set of values for the parameters and 
then (2) vary the parameters to find the maximum for LL.  The parameter values will each be 
in a cell in Excel and the value of LL will also be in a cell.  
 
Solver is a function in Excel which will identify the parameter values which maximize LL.  
Solver is usually found under the �Tools� menu.  If not, then it can be installed.  Go to �Tools� 
and then to �add-ins� (Lilien & Rangaswamy 2003).  
 
In the example Excel workbooks discussed below Solver has been set up to automatically 
find the parameter values which maximize LL. Note that, in each case, constraints have been 
specified within Solver to ensure that the parameter values are all greater than 0.000001. This 
is because for both the NBD and the DMD the parameters must be positive.     
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A Worked Example 
 
An Excel workbook accompanies this Technical Note.   
It demonstrates each of the steps in fitting the model to data using likelihood maximization.  
The name of the workbook is Dirichlet Likelihood.xls 
 
The Excel workbook cannot be considered to be packaged software for the Dirichlet Model.  
The workbook applies the model to a data set in order to demonstrate the methods as a one-
off example.  The workbook has not been setup to adjust automatically to other data sets. The 
data set here has 2500 shoppers and 3 brands.  Considerable effort would be required to 
adjust the workbook to data sets with a different number of shoppers or brands.  
 
The workbook contains four work sheets.  The function of each sheet is described below.  
The work sheets are presented in the order in which the calculations are undertaken.  Thus the 
main results are in the last work sheet. 
 
Documentation 
 
Data A data set which records the purchases of 2500 shoppers from a product category with 
three brands.  The data was simulated with parameter values γ = 1, β = 5, α1 = 1, α2 = 0.67, α3 
= 0.33 and n=2500. These are the true parameter values.  Normally the true values of the 
parameters would not be known, and they are known in this case only because the data was 
simulated. 
 
NBD Likelihood The category purchase rates for the shoppers is extracted from the data 
set.  The likelihood function (LL) for the NBD is calculated.  If the user runs SOLVER, 
which is an Excel optimising command, then the likelihood function will be maximised by 
varying the parameter values γ and β.  The result will be estimates of the parameters for 
fitting the NBD to the category purchase rate. These are the �likelihood� estimates of the 
parameters.  The estimates for γ and β are 0.97 and 5.2. 
 
DMD Likelihood The purchase rates for each of the brands for the shoppers are extracted 
from the data set.  The likelihood function (LL) for the DMD is calculated.  If the user runs 
SOLVER then the likelihood function will be maximised by varying the parameter values 
α1,α2,...,αh.  The result will be estimates of the parameters for the DMD for the brand 
purchase rates. These are �likelihood� estimates of the parameters. The estimates for α1, α2 
and α3 are 0.94, 0.67 and 0.31. 
 
Parameters This work sheet extracts the parameter estimates from the two previous work 
sheets.  The estimates of the parameters γ and β for the NBD are extracted from NBD 
likelihood.  The estimates of the parameters α1,α2,...,αh for the DMD are extracted from DMD 
likelihood.  Because the data was simulated the true parameter values are known (and are 
specified above).  As is shown in the work sheet, the differences between the true and 
estimated parameter values are small.  These differences are due to sampling variation.   
 
Conclusion 
 
The paper has discussed the estimation of the parameters of the Dirichlet Model. In the 
traditional use of the model these parameters are used to generate estimates, known as the 
theoreticals, for the brand performance measures such as purchase rate, market share, 
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penetration, purchase frequency, share of category requirements and 100% loyals (Rungie, 
Goodhardt et al. 2003). 
 
Likelihood theory is a method for estimating the parameters of the Dirichlet Model which is 
an alternate from the method originally developed and recommended by the authors of the 
model. Likelihood estimation, unlike the traditional method, requires access to the original 
raw unit record data and is computationally more intense which, with modern computing 
systems, is not problematic. Likelihood estimation is statistically more efficient; it has less 
sampling variation. This property alone has led to likelihood estimation becoming a standard 
in modelling. However, the real motivation for considering it as an alternate to the traditional 
method of zeros and ones is that increasingly the Dirichlet Model is being used in a wider 
range of applications. New developments for the model are appearing, such as its generalized 
form in which covariates are introduced. The model is taking on greater diversity. These 
developments are increasingly using likelihood estimation.  
 
This Technical Note has demonstrated the use of likelihood theory to generate estimates of 
the parameters for the Dirichlet Model. The algebraic formulas have been specified.  A 
worked example in Excel has been given with 2500 shoppers and three brands.  The example 
uses simulated data.  The estimates from likelihood estimation have been compared with the 
original parameter values used in the simulation. The researcher, using the instructions in the 
technical note can now use likelihood theory to apply the Dirichlet Model to data in Excel. 
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